SIMULATION OF THE PHYSIOLOGICAL RESPONSES OF C₃ PLANT LEAVES TO ENVIRONMENTAL FACTORS BY A MODEL WHICH COMBINES STOMATAL CONDUCTANCE, PHOTOSYNTHESIS AND TRANSPERSION

YU Qiang
(Yucheng Comprehensive Experimental Station, Institute of Geography, The Chinese Academy of Sciences, Beijing 100101)

WANG Tian-Duo
(Department of Photosynthesis, Shanghai Institute of Plant Physiology, The Chinese Academy of Sciences, Shanghai 200032)

Abstract Transpiration element is included in the integrated stomatal conductance-photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball’s model replaced relative humidity with VPD (the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO₂ concentration between leaf and ambient air are considered, VPD, the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO₂ and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO₂, are analyzed. It is shown that if the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the

* Supported by an Eighth Five Years Key Major Program of the State Science and Technology Commission and a Five Years Major Program of the National Natural Science Foundation of China.
Received : 1997-09-26 Revised : 1998-05-28
model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter.

Key words Photosynthesis, Transpiration, Stomatal conductance, Boundary layer conductance, Integrated model

Physiological responses to the changing environment have been intensively studied in the past decade on all levels, from leaf, canopy, region up to the global one. Simulation models of physiological processes in response to environmental factors is the basis of the study of the interactions between plant and environment, such as the effects of global warming and elevated atmospheric CO_2 on vegetation, and the role in plant cover in determining climate change. Leaf level is the basic level in the study of interactions between vegetation and atmosphere at which physiological regulation by feedback processes of the environmental factors as the inputs of the model are not involved. The model at the leaf level can also be used in the modeling of processes on larger scales by scaling up.1,2

The stoma is a well evolved organ which responds to environmental factors in such a manner that it not only protects the plant from excessive water loss, but also maximize water use efficiency.3 Its regulation is a key element in mass flow through the soil-plant-atmosphere continuum (SPAC) with respect to water loss and carbon gain.

Though much is known about stomatal behavior, some mechanisms have not yet to be clarified. The mathematical simulation models on stomatal conductance are mostly at a semi-empirical level, except that Upadhyaya et al.4 and Fu & Wang5 tried to construct mechanistic models which include water potential, photosynthetic electron transport rate and ion fluxes into or out of the guard cells. These models, though analytical, are useful in theoretical pursuits only since it contains some variables which are not readily measurable, and therefore can not be used on data taken by ordinary instruments, which limits their application.

A semi-empirical model proposed by Ball et al.6 summarized the linear relation between stomatal conductance and an index relating the assimilation rate of the leaf, and relative humidity and CO_2 concentration over the leaf surface. The stomatal model can be combined with photosynthesis model and vegetation evapotranspiration model, and is widely used in the analysis of many kinds of physiological-ecological problems on different scales, for example, in modeling evapotranspiration of a plant canopy.7

In Ball’s equation, stomatal conductance and photosynthesis are interdependent, and a photosynthesis submodel is needed in the solution. So Leuning8 proposed to solve a combined photosynthesis-stomatal conductance model. By combining Ball’s model with Farquhar’s intercellular biochemical model of photosynthesis, Collatz et al.9,10 proposed that boundary layer conductance (g_b) over a leaf surface may be an important factor causing midday depression, both too large or too small a value of g_b will cause a decrease in photosynthesis. But the relation between stomatal conductance and stomatal conductance index ($Anhs$/ C_s) will change when g_b changes, because it is through the response to C_s (leaf surface CO_2 concentration) that stomata response to C_a, under conditions where g_b is small, there is a substantial difference between C_s and C_a.11 Reynolds et al.12 used an integrated model to predict the effects of elevated CO_2 on photosynthesis. Shi and Wang13 used a combined model to simulate WUE (water use efficiency) as influenced by environmental factors, such as CO_2 concentration, light intensity, and VPD. A number of studies suggested that stomata respond to VPD (vapor pressure deficit) in a better defined way than to relative humidity (hs), so Leuning14 revised Ball’s model using VPD as the evaporative demand parameter driving transpiration instead of hs. The effects of the boundary layer conductance have been

© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
studied by Aphalo and Jarvis[15], and a mathematical relation between VPD and g_b and g_s (stomatal conductance) was deduced by using gaseous diffusion equation.

Although there are many studies on simulation of stomatal function and combined models, systematic analysis of physiological responses to environment has rarely been done. It is of primary importance in model building to construct a sound framework so that observed phenomena can be simulated under widely different circumstances. Numerical analysis of physiological responses is important to study the sensitivity to input factors of the model itself, and provide information for researchers to improve this kind of models. Models of physiological responses to environmental factors have a wide range of use in the modeling of crop yield formation, and can be expanded to models of plant-atmosphere interaction by scaling up.

The objectives of this study are (1) to incorporate transpiration into the model in which C_i and VPD_a will not be given directly as inputs but as variables controlled by mass diffusion fluxes and the concentration gradients, which is influenced by changes of boundary layer conductance; (2) to evaluate the effects of environmental factors, such as wind speed, vapor pressure deficit, irradiance, temperature and ambient CO$_2$ concentration on the processes of assimilation, transpiration, stomatal function and the changes in the intercellular CO$_2$ (C_i) and WUE; and (3) to reveal the relation between photosynthesis, transpiration and stomatal conductance under changing environmental factors.

1 The MODEL

The model combines the photosynthesis-stomatal conductance submodel proposed by Leuning[14] and the integrated submodel of transpiration proposed by Aphalo and Jarvis[15].

1.1 Stomatal Conductance Submodel

Steady-state models of stomatal function, which are more popular than dynamic ones, may be classified into three types[16]: multiple correlation models, phenomenological models and models based on hypothetical mechanisms of stomatal regulation. The multiple correlation models, expressing stomatal conductance as linear multiregression function of light, temperature, humidity and water potential, is of little use in analyzing mechanisms involved. In phenomenological models, a representative one of which was proposed by Jarvis[17], has been widely adopted by modellers. The model may fit well to experimental data of stomatal conductance in response to single environmental factor when other factors are kept constant.

\begin{equation}
g_{sc} = f_1(Q)f_2(T_{leq})f_3(VPD_a)f_4(C_a)f_5(\psi)
\end{equation}

where g_{sc}, the stomatal conductance to CO$_2$, is expressed as the function of irradiance (Q), leaf temperature (T_{leq}), water vapor pressure deficit from leaf to atmosphere (VPD_a), CO$_2$ concentration (C_a) and leaf water potential (ψ).

Wong\textit{ et al.}[18] found that the regulation of stomata is to hold C_i constant. In a steady state condition, there is a linear relation between g_{sc} and An when C_i and hs are not changing[19]. On this basis, Ball’s stomatal model is presented as follow.

\begin{equation}
g_{sc} = m\frac{Anhs}{C_i} + b
\end{equation}

where An is net photosynthetic rate (μmol·m$^{-2}$·s$^{-1}$); hs and C_i are relative humidity and CO$_2$ concentration over leaf surface respectively; m and b are parameters, the latter being the intercept on the coordinate g_{sc} near zero. $Anhs/C_i$ is referred to as stomatal conductance index. Since Eq. 1b is not applicable to low CO$_2$ concentrations, Leuning[8] used $C_i - \Gamma$, instead of C_i, where Γ is the CO$_2$ compensation concentration, to give a better fit. Recent experiments revealed that stomata respond to evaporative demand (VPD) more than to relative humidity of air[20,21]. By adopting these modifications, Leuning[14] proposed a revised form of Ball’s model, viz.,
$g_{sc} = m \left(\frac{A_n}{C_s - \Gamma} \right) \left(1 + \frac{VPD_s}{VPD_0} \right) + g_{s0}$ \hspace{1cm} (1c)

where g_{s0}, the intercept, is equivalent to b in Eq. (1b); VPD_0 is a parameter.

1.2 Photosynthesis submodel

Farquhar$^{[22]}$ has generalized the main aspects of intercellular bioprocesses with a biochemical model. One of the input factors needed is intercellular CO$_2$ concentration, which depends on the rate of photosynthesis and gaseous diffusion conductance controlled by stomata. The stomatal conductance and photosynthesis submodels are interdependent, so a combination of them is needed to predict physiological responses to environmental factors. The model used here was proposed by Farquhar et al.$^{[22]}$ and von Caemmerer & Farquhar$^{[23]}$. The equations and parameters used here are from Leuning$^{[14]}$. So the assimilation rate may be described as

$A_n = \min \{A_c, A_q\} - R_d$ \hspace{1cm} (2)

where A_c and A_q are the rates of photosynthesis limited by Rubisco activity and the rate of RuP$_2$ regeneration through electron transport, respectively. Daytime respiration (R_d) depends mainly on leaf temperature. The term $\min \{A_c, A_q\}$ represents the minimum of the two values within the brackets, of which A_c depends on C_i and temperature and A_q depends not only on C_i and temperature, but also on irradiance.

1.3 Transpiration Submodel

Stomata are sensitive to both CO$_2$ and water vapor concentration with their aperture widening as CO$_2$ concentration or VPD decreases. In previous combined model, VPD_s is taken as an environmental factor. When boundary layer conductance is high enough to be nonlimiting, a situation always satisfied in the leaf chamber, the relation described in the Ball’s stomatal conductance model holds. But under natural conditions, the influence of changes in boundary layer conductance, which depends mainly on wind speed, always need to be taken into account. When g_b is low, the humidity difference between ambient air and leaf surface may not be negligible, and a similar situation also exists with CO$_2$ concentration. Taking this into consideration, Apostal and Jarvis$^{[15]}$ derived an expression of VPD_s, the VPD between intercellular space and the air layer just above the leaf surface, as a function of VPD_a (the VPD between intercellular space and ambient air), g_{mv} and g_{bw} as follows under the assumption that $T_{leaf} = T_a$,

$VPD_s = VPD_a \left(1 - \frac{g_{mv}}{g_{bw}} \right)$ \hspace{1cm} (3)

where VPD_a is water vapor pressure deficit from intercellular and ambient air (Pa); g_{mv} and g_{bw} are total conductance and boundary layer conductance to water vapor (mol·m$^{-2}$·s$^{-1}$), respectively. In fact, Eq. 3 is derived from the equation for transpiration, in which VPD_s represents the driving force for transpiration.

This relation is derived from mass flux equation for steady state. We have also

$E = g_{mv} VPD_a$ \hspace{1cm} (4)

where E is transpiration rate, g_{mv} is stomatal conductance to water vapor.

The relation between g_{mv} with g_{sc} and overall stomatal conductance to CO$_2$ (g_{tc}) can be expressed in terms of g_{sc} and g_{bw} as follows.

$g_{mv} = 1.6 g_{sc}$ \hspace{1cm} (5)

$g_{sc} = (1/ g_{sc} + 1.37/ g_{bw})^{-1}$ \hspace{1cm} (6)

$g_{bw} = (1/ g_{mv} + 1/ g_{bw})^{-1}$ \hspace{1cm} (7)

in steady state, by using diffusion equation, the following relations hold:

$C_i = C_a - A_n/ g_{tc}$ \hspace{1cm} (8)

$C_i = C_a - A_n/ g_{sc}$ \hspace{1cm} (9)

where g_{bw} is boundary layer conductance to CO$_2$, the saturated vapor pressure at any leaf
temperature is calculated by the Goff-Grexh equation.

1.4 Model Solution

Nine equations (1c)\(\sim\)(9), (including A1\(\sim\)A7 used by Leuning\(^{144}\)), are used to describe the relation between nine unknown variables and consist of a set of complete nonlinear equations which can be solved by iteration. A numerical approach similar to that of Collatz et al\(^{9}\) can be used to couple the submodels. In finding the solution, the value of \(C_i\) is given first, and substituted into the biochemical photosynthesis model (Eq. 2) and to get \(An\). Then stomatal conductance is calculated from the stomatal model (Eq. 1c), and a new \(C_i\) is found by the diffusion model (Eq. 9). These steps are repeated until the change in \(C_i\) is less than a certain small value of allowance. All of the physiological variables are solved simultaneously. The negative physical and physiological feedback processes in the model guarantee the convergence of the set of equations used in respective of the kind of changes of environmental factors.

Parameters in the photosynthesis submodel are taken from Leuning\(^{144}\), with \(J_{ma0} = 50\) and \(V_{cmax0} = 25\mu\)mol CO\(_2\)·m\(^{-2}\)·s\(^{-1}\). Respiration (\(Rd\)) in Eq. 2 is 1% of \(V_{cmax}\), the maximum catalytic activity of Rubisco in the presence of saturating levels of RuP\(_2\) and CO\(_2\). In the stomatal conductance model, \(VPD_0 = 1500\) Pa, \(m = 20\).

2 Results

2.1 Boundary layer conductance

In Fig. 1, it is demonstrated that when \(g_{bc}\) is initially small, its rise due to decrease in boundary layer thickness caused by wind will induce a sharp increase in total conductance, and thereby in \(C_i\), assimilation and transpiration rates. Since stomata respond to CO\(_2\) concentration, an increase in \(g_{bc}\) may elevate \(C_i\) and enlarge \(VPD_1\), both of which have the effect of decreasing \(g_{sc}\), and, therefore, diminish the extent of increase in \(An\) caused by wind, but not totally abolish the increase. As there is an additional mesophyll resistance for photosynthesis, the diminishment of \(g_{bc}\) will have a lesser effect on \(An\) than on \(E\). So the water use efficiency (WUE) will increase with decreasing \(g_{bc}\). It means that the lowering of \(g_{bc}\) has a more severe effect on water loss than on photosynthesis. Some model experiments also suggest that in warm environments with low radiation, large leaves with thick boundary layers would have an advantage in WUE through reduced transpiration.

When \(g_{bc}\) reaches a value of about \(0.5\) mol · m\(^{-2}\)·s\(^{-1}\), the response of physiological factors will no longer change with any increase of it. It means that the extents to which surface water vapor and CO\(_2\) concentration departs from that in the ambient air is very small, the effect of \(g_{bc}\) could be neglected when \(g_{bc}\) is much greater than \(g_{sc}\). But in a similar stomatal conductance-photosynthesis model\(^{9}\), the result of simulation is that photosynthesis is inhibited under both high and low boundary layer conductance, and is high when \(g_{bc}\) takes a medium value. They included midday depression of transpiration due to stomatal closure as a result of positive feedback mediated by the boundary layer conductance, for high or low values of \(g_{bc}\) which will lead to excessive drying or heating, respectively, of the air at the leaf surface\(^{24}\). Such simulations show that the dependence of leaf transpiration on boundary layer conductance is such that maximum transpiration and photosynthesis occur at intermediate values of \(g_{bc}\). But we argue that the effect of \(g_{bc}\) may not be of great importance when it exceeds a certain value, so that differences of CO\(_2\) concentration and water vapor between leaf and ambient air are very small. The earlier model includes leaf energy balance submodel, which made the response quite complex. If we consider only the effect of \(g_{bc}\) under laboratory conditions, at a certain leaf temperature, the excessive drying does not exist. Because, pushing to the limit, even when \(g_{bc}\) is infinite, the \(e_c\) can only be as low as \(e_a\), and not lower.

Fu and Wang\(^{15}\) found in their experiment that the relationship between stomatal conductance...
Fig. 1 Simulated physiological responses to boundary layer conductance at different irradiances $e_a, 1200$ Pa; $C_a, 350 \text{mol} \cdot \text{mol}^{-1}$; $T_{inf}, 25$ $^\circ\text{C}$; $PFD, 400, 700, 1000 \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$; A_{net}, net assimilation; E, Transpiration; g_{sc}, Stomatal conductance to CO$_2$; g_{bc}, Boundary layer conductance to CO$_2$; WUE, Water use efficiency.

and stomatal conductance index (A_{net}/C_s) will change with g_{bc}. The earlier model did not include the influence of changes in g_{bc} on C_s and VPD_a, which makes some of the simulation results relating to g_{bc} questionable. The present model can simulate these influences (Fig. 2).

2.2 VPD_a

In the simulation, VPD_a is varied by changing the value of ambient water vapor pressure (e_a).
In Fig. 3, it can be seen that g_{sc} declines hyperbolically with an increase in VPD_a as observed in many studies. The response of stomata to a change in VPD_a is closely related with the process of transpiration. C_i declines almost linearly with an increase in VPD_a, because of stomatal closure, and An declines with increasing VPD_a by a weak accelerating rate which is caused by a C_i value which is progressively more limiting to photosynthesis. Comstock\cite{25} has found this relation to hold in his experimental study. The results of simulation imply that C_i responds to VPD_a more evidently than to other stimuli. Since small changes in humidity can affect stomata without directly affecting assimilation rate in many species\cite{26}, C_i varies with humidity\cite{27}. It is pointed out that there is a nearly linear relation between C_i and VPD_a in Leuning’s revised model which is shown in Fig. 3(b). WUE decreases with increasing VPD_a more rapidly than any other elements, as transpiration increases and photosynthesis decreases with increasing VPD_a, this relation is also shown in the experiment of Comstock\cite{25}.

VPD_a is the force driving water vapor from leaves to the atmosphere, transpiration is affected also by the conductance of stomata, which in turn responds to the VPD_a in their micro-environment, and thus forming a feedback loop. This is the feedback effect of stomata’s response to humidity deficit, i.e., an increase in the rate of transpiration will cause a decrease in stomatal conductance, which in turn will decrease the rate of transpiration by some extent. So transpiration increases with an increase in VPD_a, but to a lesser degree. Feedforward occurs when the imposed change in the environmental factors affecting transpiration rate causes a change in conductance independent of the resulting change in the transpiration rate. Although many other species do not exhibit feedforward reaction, cases in which transpiration rate declined with increasing evaporative demand have been found by many researchers as listed by Farquhar\cite{28}. From Fig. 3d, E always increases with increasing VPD_a, so obviously, this model cannot simulate the feedforward response of stomata to humidity deficit.

When VPD_a changes, workers are always concerned with the interrelation between the physiological responses. A nearly linear decrease of conductance with increasing transpiration rate is presented in stomatal response to humidity (Fig. 4). Monteith\cite{29} selected fifty-two sets of measurements appearing in seven publications, and showed that of the 271 individual measurements of stomatal conductance, 234 showed a strong evidence to support this relation.

2.3 Leaf temperature

Temperature affects photosynthesis and stomatal conductance in two ways, one is on the intrinsic speed of biochemical processes of photosynthesis, the other is on VPD_a through its effect on
the saturated intercellular vapor pressure. According to the chain of effects discussed in the preceding paragraphs, photosynthesis decreases with increasing VPD_a because of the limitation caused by stomatal closure.

Fig. 5 shows that assimilation, transpiration and stomatal conductance vary with temperature as one-peaked curves. Measurements of stomatal conductance response to temperature gave the optimum-type responses like many other biological responses. The optimum temperature of
stomatal conductance is lower than that of assimilation. Although stomatal conductance is proportional to assimilation in experimental studies under certain conditions\[^{34}\text{1}^{33}\], an increase in temperature will cause an exponential increase in VPD_a which will make stomatal conductance decline hyperbolically. So the magnitude of decline in g_{sc} is greater than those in A_a and E. When leaf temperature is lower than the optimum temperature for stomatal conductance, E increases sharply with increasing T_{leaf}. Both VPD_a and g_{sc}, the two factors determining transpiration rate, increase with increasing temperature. When leaf temperature exceeds slightly its optimum value for stomatal conductance, transpiration will continue to increase before the decrease of g_{sc} is stronger than the increase of VPD_a. When T_{leaf} rises further, a point will eventually be reached when the stomata close so tightly that transpiration decreases despite of the very large VPD_a. WUE declines monotonously with an increase in temperature, because the increase in VPD_a is much steeper than that in CO$_2$ concentration deficit. From the analysis made above it follows that C_i/C_t is determined mainly by the changes in g_{sc} caused by changes in VPD_a, so an increase in temperature causes a monotonous decrease in C_t.

2.4 Irradiance

Irradiance affects physiological processes in two ways: (1) physiologically providing the energy for photosynthesis, and (2) physically affecting the leaf energy balance, which determines leaf temperature. The former part also includes direct and indirect responses of stomatal conductance, e.g., pigments within the guard cells absorb the light and then the guard cells respond to CO$_2$\[^{34}\]. Under natural conditions, both parts should be taken into consideration. Here we only take account of the former, omitting the leaf energy budget, and the leaf temperature is assumed constant so as to compare with some experimental results under laboratory conditions, and to observe the two effects separately.

The curves are the results of simulation for different leaf temperatures. The receptor for light is the photosynthetic system, which is inside the mesophyll. So firstly, A_n increases with PFD along the Michaelis-Menten curve. The intersection of curves in Fig. 6a shows the influence of temperature on both photosynthesis and respiration. Secondly, C_t decreases with increasing PFD, so as to enlarge the difference between C_a and C_t, but the change is not great over a wide range of PFD and is evident when irradiance is weak (Fig. 6b). This phenomenon always exists as first proposed by Scarth (1932) that an increase in irradiance can cause an increase in photosynthesis, leading to a decrease in C_t, and then stomata open in response to the decrease in the C_i\[^{34}\]. Wong\[^{31}\] found that A_n and g_{sc} change in the same proportion, so that C_i changes very little over a wide range of PFD. In most of the species examined, when light intensity increases, photosynthesis and conductance increase, but C_t decreases obviously at low PFD, and comes to a fairly constant value when light intensities are above 10 percent of full sunlight\[^{35}\].

When VPD_a is kept constant transpiration is determined mainly by g_{sc}. Both photosynthesis and transpiration are increasing with irradiance. Although their ratio, WUE, increases with
The conditions are the same as in Fig. 1, except for boundary layer conductance, which is 1.0 mol CO$_2$·m$^{-2}$·s$^{-1}$.

irradiance (Fig. 6e), its increase rate is smaller than that of either A_n or E. This means that an increase in irradiance increases photosynthesis more than transpiration, by contrast with the effect of an increase in boundary layer conductance which is greater on transpiration than on photosynthesis (Fig. 1e). When PFD exceeds about 600 μmol·m$^{-2}$·s$^{-1}$, the increase of the WUE is not significant, as Shi and Wang[13] found in their experiment.

For relation between physiological factors, it is shown that g_{sc} increases as A_n increases.
Simulated physiological responses to PFD at different leaf temperatures

The conditions are the same as in Fig. 1, except for the boundary layer conductance, which is 1.0 mol CO$_2$ m$^{-2}$ s$^{-1}$.

When g_{sc} increases, VPD decreases from Eq. 3, which diminishes somewhat the degree of increase in transpiration rate with increasing g_{sc} (Fig. 7).

2.5 Ambient CO$_2$

Physiological response of plant to elevated CO$_2$ concentration can be divided into two kinds. The short-term one does not include the change in photosynthetic system, whereas a long-term one includes the acclimation of photosynthetic activity to elevated CO$_2$.[36] Here a short term response in
Fig. 7 Simulated physiological responses to ambient CO$_2$ concentration at different irradiances.

The conditions are the same as in Fig. 1, except for the boundary layer conductance, which is 1.0 mol CO$_2$·m$^{-2}$·s$^{-1}$.

A steady state is considered.

In Fig. 7, a nearly linear increase in C_i with an increase in ambient CO$_2$ is generated by the model. It shows that the intercept is near zero, so C_i / C_a, or more precisely C_i / C_s is almost constant, as was found by many workers, e.g. Wong$^{[18,31]}$; Sharkey and Raschke$^{[37]}$; Morison and Jarvis$^{[35]}$ among others.

Because there is a linear relation between C_a and C_i (Fig. 7b), the relation between A_n and
C_o, shown in Fig. 7c can also be taken as the relation between An and C_i. The relation between An and C_o obeys the Michaelis-Menten equation. As An increases and stomatal conductance decreases with an increase in C_o, a stomatal sensing of C_i occurs. In many experiments, the response of stomatal conductance to CO_2 concentration is generally curvilinear, showing larger changes in response to concentrations increase below $300 \mu mol \cdot mol^{-1}$ than under higher concentrations. Eq. 1b should not be used when $An \to 0$ (when $PFD < 50 \mu mol \cdot m^{-2} \cdot s^{-1}$ or $C_s < 100 \mu mol \cdot mol^{-1}$), and when the use of C_i instead of C_s in Ball’s model will fit well at low CO_2 concentrations$^{[8]}$. In some reports, maximum conductance occurred at an ambient CO_2 of $100 \mu mol \cdot mol^{-1}$$^{[38,39]}$; in most of others, at $0 \mu mol \cdot mol^{-1}$. We have found that the nature of stomatal conductance at low CO_2 may correlate closely with CO_2 compensation point in the simulation. The peak of g_{sc} at high Γ is obvious, and occurs at higher CO_2 concentrations than at small Γ.

Transpiration also declines with an increase in CO_2 concentration, in the same pattern as stomatal conductance when VPD_s is nearly constant, and so WUE increases with increasing CO_2 nearly linearly. The extent to which WUE increases is about 100 percent under doubled CO_2 concentration, as is shown in Fig. 7e. Morison and Gifford$^{[40]}$ found that under doubled CO_2 concentration, a 67% increase in WUE on average was observed for young plants. Many experiments found photosynthesis and WUE increases with increasing CO_2 concentration$^{[13, 39]}$.

3 DISCUSSION

(1) The integrated model presented here is capable of simulating physiological responses to boundary layer conductance, whereas the previous models can not. The difference of the model from previous one is the consideration of gaseous transfer into and out of stomata. Ball’s model is based on the results that g_{sc} varies in proportion to An when C_i and h_s are held constant, which is found by Wong$^{[18]}$. It has the same meaning as to say that C_i/C_i is constant on the condition that humidity is not changing. In this kind of model, C_i is determined by C_s and VPD_s, and therefore if C_s and VPD_s are given input factors, C_i could be obtained directly. So in the biochemical model of photosynthesis, An can be determined when T_{leaf}, PFD and C_i are known, g_{sc} can be calculated by the stomatal model.

In the present model, after g_b is incorporated into the combined model, C_i and e_r are no longer taken as constant, and are therefore not inputted into the model as constants, but are variables in the combined model. It means that C_s and VPD_s are taken as variables controlled by physiological and ecological factors. For example, when irradiance changes, the change in g_{sc} will induce changes in C_i and e_r. So C_i is not solely dependent on VPD_s, as inferred from the previous model in Eq. 11, but changes also with irradiance. Also assuming that C_i/C_i is proportional to VPD_s by taking g_b into account, and VPD_s will change with other environmental factors, such as PFD. C_i also varies with PFD which is a regular phenomenon in experiment, when other factors are kept constant. So more realistic results will be obtained.

In this study, a comprehensive numerical analysis of the model is done. Most of the results of simulations fit reasonably well with experimental results. Such as the fact WUE increases linearly with ambient CO_2 (Fig. 6e), the relation between transpiration and stomatal conductance under varying atmospheric humidity shows a response of stomata to leaf water loss (Fig. 4).

Stomatal response to increasing CO_2 usually take the shape of either a one-peaked or persistently declining curve. Simulations show the location of peaks of response lines of stomatal conductance to CO_2 as determined by the compensation points of photosynthesis. This result needs experimental verification.

There are still some problems in the model. For example, under different CO_2 concentrations
and \(PFD' \) s, photosynthesis has saturated points for light and \(\text{CO}_2 \), when \(\text{CO}_2 \) concentration or \(PFD \) exceeds the points, photosynthesis will not increase with the factors, but in the photosynthesis model, even under high \(PFD \) or \(\text{CO}_2 \) concentration the photosynthesis rate still increase slightly. Whether the \(WUE \) inferred from the simulation of photosynthesis and transpiration gives a reasonable results should be tested by experiment.

(2) Under water stress condition, there are still many problems which need be studied, such as the relation between \(C_l/C_r \) and \(VPD_a \), and the effect of water stress on stomatal conductance through electron transport of photosynthesis or the guard cell water potential.

(3) In elucidating the mechanism of stomatal response, it is advisable to construct a dynamic model with experiments on a time scale of minutes. The time courses of changes in \(An \), \(C_l \) and \(g_{sc} \) are different under different levels of \(\text{CO}_2 \) concentration, \(PFD \) and \(VPD_a \), because each driving variable may be sensed by a particular receptor in the plant, and the other physiological processes will react as feedbacks. A change in each environmental variable will cause a chain of physiological events, the final steady state is determined by the sequence of events, or, to put in other words, the system has a history, that will make the system very complicated.

\[4 \quad \text{CONCLUSIONS} \]

The system of models developed here generalizes the physical and eco-physiological processes and interactions or regulation mechanisms at the leaf level. The sensitivity of the model was examined in a wide range of each environmental factor, i.e., boundary layer conductance, water vapor deficit, ambient \(\text{CO}_2 \) concentration, temperature, and irradiance. Numerical simulations give predicted values of physiological responses similar to those observed in many experimental studies, and sometimes more realistic than those inferred from previous models. Since boundary layer conductance and leaf temperature are closely related to wind speed or air temperature and irradiance, respectively, the combined model can be easily applied to natural conditions after the physiological parameters in the model for given plant types are determined in experiment, in which the inputs of the model are atmospheric variables, such as wind speed, humidity, temperature, solar radiation and atmospheric \(\text{CO}_2 \) concentration. A leaf energy balance model can be included in the leaf temperature model and a photoinhibition submodel should be considered in the studies on diurnal variations in the nature of physiological processes on fine days. The integrated model can be scaled up from a leaf to the canopy and expanded to the simulation of the interactions between vegetation and environment.

\[\text{REFERENCES} \]

