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Abstract Climate change presents perhaps the greatest
economic and environmental challenge we have ever
faced. Climate change and its associated impacts,
adaptation and vulnerability have become the focus of
current policy, business and research. This paper
provides invaluable information for those interested in
climate change and its impacts. This paper comprehen-
sively reviews the advances made in the development of
regional climate change scenarios and their application
in agricultural impact, adaptation and vulnerability
assessment. Construction of regional climate change
scenarios evolved from the application of arbitrary
scenarios to the application of scenarios based on
general circulation models (GCMs). GCM-based climate
change scenarios progressed from equilibrium climate
change scenarios to transient climate change scenarios;
from the use of direct GCM outputs to the use of
downscaled GCM outputs; from the use of single
scenarios to the use of probabilistic climate change
scenarios; and from the application of mean climate
change scenarios to the application of integrated climate
change scenarios considering changes in both mean
climate and climate variability.
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Introduction

Climate change attracted people’s attention in the middle of
the 1980s. Extensive studies on the potential impacts of
climate change on agricultural production have being
conducted over the past 20–30 years. A top-down approach
has been adopted in agricultural impact assessment and
adaptation evaluation. In this approach, climate change
scenarios (CCSs) were first constructed and then applied to
biophysical models to quantify the potential impacts of
climate change on agricultural production. How a regional
CCS is developed directly influences the results of climate
change risk assessment (CCRA). According to the ways in
which they are constructed, there are three types of CCS:
analogue scenarios, incremental synthetic (or arbitrary)
scenarios, and model-based scenarios (Mearns et al.
2001a). Changes in both mean climate and in climate
variability are considered in the latter two types of CCS.
Model-based scenarios are the mainstream CCSs utilized in
risk assessment.

Assessment of climate change impact, adaptation and
vulnerability has shifted progressively from being
applications of scientific curiosity to a policy-relevant
orientation (Lu 2006). To enhance the understanding of
climate change and the capacity to assess climate change
risks and better inform decision/policy making, this paper
comprehensively reviews current methodologies in the
development of regional CCSs and their application to
agricultural risk assessment. Although this review focuses
on the development of CCSs from an agricultural
perspective, the information provided will be invaluable
to other relevant sectors and disciplines, such as forestry,
ecology, fisheries, water resources, public health and
energy supply.
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This review firstly introduces analogue scenarios and
their application, followed by incremental synthetic CCSs
and their application to system sensitivity studies. Last
are model-based scenarios, including several subsections
such as transient versus equilibrium CCSs, use of direct
outputs versus downscaled outputs of GCMs, single
scenarios versus probabilistic CCSs, and mean CCSs
versus CCSs with changes in both mean and variability
integrated. Summaries and recommendations are given at
the end.

Analogue scenarios

Analogue scenarios can be either spatial or temporal—in both
cases a recorded climate regime that may resemble the future
climate at the location in question will be used (http://www.
parc.ca/pdf/conference_proceedings/jan_01_barrow1.pdf). In
the spatial analogue approach, regions with a climate similar
to that projected for the study region in the future are
identified. However, this approach is generally restricted
since the non-climatic conditions of the two regions, e.g.,
soil type, day length etc., are dissimilar. Parry and Carter
(1988) applied the spatial analogue approach to assessment
of the impact of climate change on agriculture.

In the case of temporal analogues, past climate at a
given location, which resembles the projected future
climate for that location, is utilised. Both palaeoclimate
information and actual observed instrumental records
can be used. There are a number of caveats regarding
palaeoclimate analogues: (1) changes in the past were
unlikely to have been caused by increased greenhouse
gas (GHG) concentrations, (2) the data and resolution
are generally insufficient, (3) uncertainty about the
quality of palaeoclimatic reconstructions, (4) higher
resolution (and most recent) data generally lie at the
low end of the range of anticipated future climatic
warming. The instrumental analogue has its own
advantages and disadvantages. Its advantages reside in
data availability on a daily and local scale, and that
scenario changes in climate are actually observed and so
are internally consistent and physically plausible. Its
disadvantages are that climate anomalies during the past
century have been fairly minor compared to anticipated future
changes, and any anomalies are probably associated with
naturally occurring changes in atmospheric circulation rather
than changes in GHG concentrations (http://www.parc.ca/pdf/
conference_proceedings/jan_01_barrow1.pdf). Nishioka et
al. (1993) applied instrumental analogue scenarios in a
study examining the effects of climate change on rice
production in Japan.

Analogue scenarios are valuable in testing and validating
impacts models but it is not usually recommended that they

be adopted in representing future climate in quantitative
impact assessment (http://unfccc.int/files/national_reports/
non-annex_i_natcom/cge/application/vnd.mspowerpoint/
climate_scenarios.pps).

Synthetic scenarios

Synthetic (or incremental or arbitrary) scenarios were used
in early climate change impact assessment. For this type of
scenario, the change in each weather variable is unrelated to
changes in other variables. This approach is normally
applied through system sensitivity analysis, in which the
user modifies the historical climate conditions through an
absolute difference (for temperature change) and/or a ratio
(rainfall, radiation and other variability changes). Generally,
arbitrary incremental changes in climate (for example, a
temperature increase of 2°C or 4°C and/or a rainfall change
of ±20%) are specified and uniformly applied to the
baseline climate to explore the response of crop production
systems to changed climate with the aid of crop models
(McKeon et al. 1988; Wang et al. 1992; Aggarwal and
Sinha 1993; Tubiello et al. 1995; Menzhulin et al. 1995;
Seino 1995; Rosenzweig and Iglesias 1998). Single climatic
variables (Aggarwal and Sinha 1993; Tubiello et al. 1995)
or combinations of climatic variables (McKeon et al. 1988)
were considered in sensitivity studies. Arbitrary scenarios
accompanied GCM-based CCSs in later impact studies
(Barry and Geng 1995; Baethgen and Magrin 1995;
Brklacich and Stewart 1995; Menzhulin et al. 1995; Seino
1995; Rosenzweig and Iglesias 1998).

The importance of changes in climate variability drew
people’s attention in the 1990s. Several studies around the
world tested the sensitivity of crop yield to changes in
temperature and rainfall variability, which were made
arbitrarily (Mearns et al. 1992 and 1996; Riha et al. 1996;
Luo and Lin 1999; Trnka et al. 2004; Torriani et al. 2007;
Luo et al. 2010). Due to the poor performance of GCMs in
simulating the behavior of climate variability and the
absence of access to daily outputs of GCMs to derive
changes in climate variability at that time, impact assess-
ment of changes in climate variability was limited to
sensitivity analysis. In other words, the impact of arbitrary
changes in climate variability were explored.

Synthetic CCSs maintain the statistical distribution of
historical climate but do not consider the statistical links
between climate variables. They are often used in sensitiv-
ity analysis rather than climate impact assessment. This
type of scenario is therefore unrealistic and not related to
the wider scenario framework. However, as arbitrary
sensitivity tests are dissociated from the processes that
influence climate, they simulate a controlled experiment
and provide a better understanding of the factors affecting
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crop model responses. They can also be used in impact
model sensitivity tests and model comparisons for the
improvement of impact models or better parameterization
(Addiscot et al. 1995; Riha et al. 1996; Wolf et al. 1996).
Moreover, they can also help identify climatic thresholds of
critical impacts. Sensitivity studies allow the consideration
of the question: ‘What type, magnitude, and rate of climate
change would seriously perturb the system in question’?

Model-based scenarios

Model-based scenarios are derived from simple climate
models (radiative forcing algorithms), full GCMs and
regionalization model/downscaling techniques. Simple
climate models allow multiple simulations to be con-
ducted rapidly, enabling exploration of the climatic
effects of alternative scenarios of radiative forcing,
climate sensitivity and other parametrization uncertain-
ties. Simple climate models are unable to represent the
non-linearities of some processes that are captured by
more complex models (http://unfccc.int/files/national_reports/
non-annex_i_natcom/cge/application/vnd.mspowerpoint/
climate_scenarios.pps). The model for the assessment of
greenhouse-gas induced climate change [MAGICC/SCENario
GENerator (SCENGEN),Wigley 2003] has been used widely
in producing future CCSs. GCMs provide the most advanced
tool for projecting the potential climatic consequences of
increasing radiatively active trace gases in a consistent
manner. GCMs are used extensively to create CCSs
because they produce climate variables that are inter-
nally consistent (i.e., the climate variables within the
scenario vary in a physically realistic way; Wigley
1987). Thus, they are more realistic and allow for
comparisons between or among regions (Rosenzweig and
Parry 1994; Rosenzweig and Iglesias 1998). Application
of GCM model-based scenarios have evolved from
equilibrium CCSs to time-slice CCSs or transient CCSs;
from the use of direct GCMs outputs to downscaled
outputs of GCMs including both spatial and temporal
downscaling; from the application of single scenarios to
probabilistic CCSs, and from mean CCSs to the integra-
tion of both mean and variability change scenarios.

Equilibrium and transient climate change scenarios

Development of equilibrium and transient CCSs is in line
with the development of GCMs. Earlier generations of
GCMs (UKLO, Wilson and Mitchell 1987; UKHI, Mitchell
et al. 1990) were equilibrium climate models that were
based on equilibrium climate experiments. The climate
models are allowed to fully adjust to a change in radiative
forcing in equilibrium climate experiments. Such experi-

ments provide information on the difference between the
initial and final states of the model, but not on the time-
dependent response. Later and current climate models
(UKTR, Murphy 1995; Murphy and Mitchell 1995; GFDL,
Manabe et al. 1991, 1992) are transient climate models in
which the forcing is allowed to evolve gradually according
to a prescribed emission scenario. In this way, the time
dependent response of a climate model can be analyzed.

Substantial progress has been made in the development
of transient (time-evolving) scenarios of climate change for
use in agricultural impact assessment. Many crop models
contain cumulative functions that retain environmental
information over consecutive years (e.g., water balance,
soil nutrients). These factors could account for substantial
yield response differences between transient and equilibri-
um CCSs. A few studies have deliberately compared
simulated yields using transient and equilibrium CCSs.
Using the UKHIv equilibrium scenario with increased
interannual variability at Rothamsted, Semenov et al.
(1996) simulated a loss of wheat yield relative to the
present with two crop models, and no change with a third.
With the UKTR transient scenario, all three models showed
yield increases relative to the present. The US Country
Studies Program (Smith et al. 1996) used the CERES-
Wheat model (Tubiello et al. 1999; Jones et al. 2003) to
simulate larger average increases in winter wheat across
Kazakhstan with the GFDL transient climate scenario (for
the tenth decade) (+21% winter wheat yield) than when
using the GFDL equilibrium CCS (+17% winter wheat
yield). Spring wheat yields were decreased in both
scenarios, but once again the yields simulated with the
transient scenario were not as adversely affected as those
simulated with the equilibrium CCSs.

Menzhulin et al. (1995) studied the possible impacts of
three equilibrium CCSs (GISS, GFDL, UKMO) and three
levels of GISS transient CCSs for 2010, 2030 and 2050
respectively on wheat yield with CO2 induced physiolog-
ical effects taken into account. The simulated result
showed that yield for winter wheat increased from 9% to
41%, with the greatest increase under the equilibrium
GISS scenario and least increase under the equilibrium
UKMO model. Spring wheat yield decreased under
equilibrium UKMO and GFDL scenarios, but increased
under other scenarios. Yield responses for winter wheat
and spring wheat under equilibrium and transient CCSs
were quite different. Rosenzweig and Iglesias (1998) also
found wheat yields to be less adversely affected by transient
CCSs than equilibrium CCSs. Similar conclusions were
drawn by Delécolle et al. (1995). Lack of consistency in the
application of CCSs to impact modelling (i.e., based on the
outputs of different climate model type: equilibrium vs
transient) between studies gives competing explanations
about differences in impact estimates.
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Use of direct and downscaled GCM outputs

The outputs of GCMs have been linked extensively to
dynamic crop models to assess climate change risks. There
are three mismatches between the outputs of GCMs and
crop model requirements. First is the different spatial
resolution. The outputs of GCMs have a coarse spatial
resolution with grid-points spaced around 200–400 km or
more apart, which is too coarse for regional agricultural
impact assessment if the estimated change in climate is
affected by sub-grid scale surface features such as topog-
raphy, lake, coast, vegetation, soil and variations in land use
(Semenov and Barrow 1997; Orlandini et al. 2008). Crop
models simulate processes regulating the growth and
development of crops at fine scales such as a few
kilometers or even finer. For example, where two or more
soil types exist in a single paddock, it may be appropriate to
parameterize the soil module for the different soil types)
(Barrow and Semenov 1995; Easterling et al. 1998; Luo
2003). The second mismatch lies in the different temporal
resolution between outputs of GCMs and crop model
requirements. Most crop models operate at a daily time
step. Although nowadays GCMs can produce daily or even
hourly outputs, the most common and reliable temporal
resolution for the CCRA community to access and apply is
monthly climate change data. It is not sensible to use hourly
and/or daily GCM outputs directly for agriculture impact
assessment because of the difficulty in interpreting the
higher temporal resolution data over large grid boxes. The
last and most important mismatch is that GCMs do not
perform well on high-frequency events affecting smaller
scales (Dubrovsky 1996; Semenov 2007). The fundamental
lack of mesoscale parameterizations in GCMs may be
improved by statistical and or dynamical downscaling
approaches.

There are a number of ways to get around these
mismatches. The most straightforward way is to apply
coarse-scale climate change projections (direct outputs of
GCMs) to a high resolution observed climate baseline—the
change factor approach (Wilby et al. 2004). This approach
assumes stationarity of climate variability from the daily to
interannual scale and requires longer term observed daily
climate data. Changes are derived from 30-year periods
between the future and the baseline period, and such
changes can be monthly, seasonal or yearly depending on
the application. Normally, absolute changes are applied to
temperature records while ratio changes are applied to
historical rainfall and solar radiation. Another simple
approach is spatial interpolation, as is used in packages
such as Bias Correction Spatial Disaggregation (BCSD,
Maurer 2007), and Bias-Correction Constructed Analogs
(BCCA), OZClim (http://www.mssanz.org.au/MODSIM01/
Vol%202/Page.pdf). These tools provide publicly available

scenarios on the Climate Wizard, including downscaled
climate projections across the whole globe or region from
multiple climate models, emission scenarios, and over
different time periods. Luo et al. (2005a, b, c; 2006)
applied the outputs of OZClim (a pattern-scaling approach)
to wheat impact assessment in the context of climate
change. Similar approaches were also applied to other
agricultural impact assessment (Trnka et al. 2009;
Kocmankova et al. 2011; Audsley et al. 2006). More
complicated downscaling techniques emerged in the
middle of the 1990s and were applied widely to develop
higher spatial and temporal resolution CCSs for risk
assessment.

Mainstream downscaling techniques

Statistical downscaling (SD), dynamical downscaling and
weather generators are typical downscaling techniques used
worldwide. Each have their own strengths and weaknesses.

Statistical downscaling The main concept of SD is to
derive statistical transfer functions between large-scale
variables that are resolved by GCMs and local variables
of interest that are not resolved in typical GCMs (Leung et
al. 2003). A number of assumptions apply to the SD
approach (Timbal et al. 2003; Leung et al. 2003; Wilby et
al. 2004):

1. the statistical relationship between large scale predic-
tors and local predictands must remain valid under
altered climatic conditions;

2. strong predictor variables for current climate must carry
climate change signals;

3. predictors relevant to the local predictand should be
reproduced adequately by the host climate model at the
spatial scale used to condition the downscaled
responses; and

4. the predictors used for determining future local climate
should not lie outside the range of the climatology used
to calibrate the SD model

Typical SD methods include weather classification
(analogue and spatial rainfall occurrence classification),
regression models (multiple regression, canonical correla-
tion analysis and artificial neural networks) and weather
generators (Prudhomme et al. 2002; Wilby et al. 2004).
There are a couple of advantages of SD. The main
advantage of SD is that they are computationally inexpen-
sive, and can be applied to the outputs of a range of GCM
experiments (Timbal et al. 2003) and therefore address
uncertainty issues, especially (climate) model-to-model
differences. The other advantage is that they can be used
to provide site-specific climate change information, which
can be critical for many impact studies (Wilby et al. 2004).
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However, SD does have some limitations. For example, it
cannot take account of small-scale processes with strong
time-scale dependencies (e.g., land-cover change; Carter et
al. 2007). The first and the last of the assumptions
mentioned above seem to be controversial in dealing with
climate change, indicating the limitations of this approach.
Most SD techniques so far (e.g., Schmidli et al. 2006;
Timbal et al. 2008) focus on temperature and rainfall, while
the downscaling of other climate variables relevant to agro-
and bio-meteorology (e.g., solar radiation, air humidity) and
of extreme climate events has received far less attention.
Nevertheless, there have been a few attempts to address
these aspects (Huth 2005; Kyselý 2002; Busuioc et al.
2008; Hundecha and Bárdossy 2008).

To date, most of the SD approaches mentioned here are
practised by climatologists, rather than by impact analysts
undertaking fully fledged, policy oriented impact assess-
ment. This is because the scenarios have been regarded
largely as unreliable, too difficult to interpret, or do not
embrace the range of uncertainties in GCM projections in
the same way that simpler interpolation methods do (Wilby
et al. 2004).

Dynamic downscaling In parallel with the development of
SD, there have been developments in dynamic downscaling
techniques with the advent of regional climate models
(RCMs) and high resolution limited area models
(HRLAMs). RCMs take boundary conditions from coarser
resolution GCM simulations and provide a higher spatial
resolution of the local topography and more realistic
simulation of fine-scale weather features (Semenov 2007).
Theoretical limitations of the RCM approach include the
effects of systematic errors in the driving large-scale fields
provided by the global model, the lack of two-way
interactions between regional and global climate, and the
internal variability due to non-linear internal dynamics not
associated with boundary forcing. The high demand for
computing resources presents a practical limitation (Mearns
et al. 2003a). HRLAMs such as DARLAM (Zhang et al.
2001) can enhance the spatial resolution of GCMs as LAMs
can represent surface characteristics more effectively than
GCMs. The LAM approach consists of a HRLAM, one-
way nested at its lateral boundaries with low-resolution
GCM. One advantage of a LAM is that it can also be driven
by (accurate) atmospheric reanalyses rather than by GCMs
(with their inherent biases); this feature is very convenient
for development and validation purposes (Laprise 2008).
As limited-area models, RCMs cover only a portion of the
planet, typically a continental domain or smaller. There has
been limited two-way coupling between RCM and GCM
(Laprise 2008).

Stretched grid (variable resolution) and time-slice experi-
ments are new dynamic downscaling methods used in

modelling regional climate (Timbal and McAvaney 2001;
Leung et al. 2003). The stretched grid method is often used
in global models with the highest resolution over the area of
interest. In time-slice experiments, high-resolution atmo-
spheric models are forced by coarse oceanic anomalies
derived from coupled atmospheric–ocean general circula-
tion models (CAOGCMs). A practical weakness of high
resolution model is that they generally use the same
formulations as at the coarse resolution at which they have
been optimized, so that some model formulations may need
to be “re-tuned” for use at higher resolution. Another issue
concerning the use of variable resolution models is that
feedback effects from fine scale to large scale are
represented only as generated by the region of interest,
while in the real atmosphere, feedbacks derive from
different regions and interact with each other (Mearns et
al. 2003a).

While there have been, particularly during the last
decade, significant advances such as the development of
variable resolution climate models, scenarios resulting from
dynamic downscaling by RCM do still not provide the
resolution necessary to match the spatial scales considered
in most agro- and bio-meteorological studies. For instance,
in the context of the EU Project ENSEMBLES (http://
ensembles-eu.metoffice.com), the highest resolution
achieved with RCM was only 25 km × 25 km. Therefore,
a combination of dynamic and statistical downscaling or
stochastic weather generation could be necessary in some
cases.

Dynamic downscaling has one advantage over empirical
downscaling techniques that have been used frequently to
increase the resolution of climate model results in that the
resulting higher- resolution climate is physically based, and
therefore the assumption of constancy of derived empirical
relationships between large-scale and local climate con-
ditions under perturbed climate conditions need not be
made (Mearns et al. 1997; Semenov 2007), Dynamic
downscaling has been applied substantially to agricultural
impacts assessments since 1998 (Mearns et al. 1998, 1999,
2000, 2001b; Brown et al. 2000; Thomson et al. 2002;
Semenov 2007; Luo et al. 2009 and 2010). Prior to this
time point, these techniques were used mainly in pilot
studies investigating the effects of changes in climate
variability on wheat yields (e.g., Mearns et al. 1997).
Agricultural impact assessment based on dynamically
downscaled climate change information was limited in
addressing uncertainty issues due to the high demand for
computing resources. Most RCMs and variable resolution
climate models rely on only one driving AOGCM, and
scenarios are usually available from only one or two RCMs
(Carter et al. 2007). More elaborate and extensive model-
ling designs have facilitated the exploration of multiple
uncertainties (across different RCMs, AOGCMs, and
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emissions scenarios) and how those uncertainties affect
impacts. Giorgi and Francisco (2000) examined the
uncertainty in regional climate change simulations for the
twenty-first century across five coupled AOGCMs and
different anthropogenic forcing scenarios over 23 regions in
the world. The PRUDENCE project in Europe produced
multiple RCM simulations based on the ECHAM/OPYC
AOGCM and HadAM3H AGCM simulations for two
different emissions scenarios (Christensen et al. 2007a).
Uncertainties due to the spatial scale of the scenarios,
stemming from the application of different RCMs versus
different GCMs (including models not used for regional-
ization), have been elaborated on in a range of impact
studies. For example, Olesen et al. (2007) found that the
variation in simulated agricultural impacts was smaller
across scenarios from RCMs nested in a single GCM than it
was across different GCMs or across different emissions
scenarios.

Weather generators As mentioned above, one of the
mismatches between the outputs of GCMs and crop models
is temporal scale. To bridge the gap between the outputs of
GCMs at monthly scale and the crop model requirement of
daily time steps, stochastic weather generators are often
used. Commonly used weather generators include LARS-
WG (Semenov and Barrow 1997), PRECIS (Jones et al.
2004), WGEN (Richardson 1985), AAFC-WG (Qian et al.
2004) and Met & Roll (Dubrovsky 1996). These weather
generators were developed and applied as computationally
inexpensive tools to generate long time series of CCSs
randomly with high temporal resolution by using the
variability, means and other characteristics of historical
daily climate records. Weather generators have been
improved to produce weather series from single site to
multiple sites and/or at regional scale (Wilks 1999a, 1999b;
Apipattanavis et al. 2007; Semenov and Brooks 1999;
Khalili et al. 2009). They also have been improved to better
simulate extreme weather events (Semenov 2008). These
afore-mentioned weather generators have been evaluated
rigorously around the world with diverse climates and
demonstrate good performance in reproducing various
weather statistics including extreme weather events
(Semenov et al. 1998; Qian et al. 2004, 2005; Kyselý
and Dubrovský 2005; Semenov 2008) and interannual
variability, although there is not much understanding at a
statistical level of the modes characterizing variability at
the interannual to decadal scale for many regions of the
world. There are many applications of these weather
generators to CCRA. Qian et al. (2005) quantified a
number of climate indices for three locations in Canada by
using the AAFC-WG. Semenov (2007) quantified a
drought-stress index of wheat and the probability of the
occurrence of hot days during flowering time at Roth-

amsted, UK, using LARS-WG. Luo et al. (2003, 2009,
2010) assessed the impacts of changes in mean climate
and/or climate variability on wheat production and
evaluated the effectiveness of a range of adaptation
options using the LARS-WG. It should be noted that
these five weather generators handle only common
climate variables such as temperature, rainfall and solar
radiation. In addition to these three types of climate
variables, ClimGen (http://www.bsyse.wsu.edu/CS_Suite/
Climgen/index.html), which is part of the CropSyst suite,
has the capacity to analyze humidity and wind speed.

Inter-comparison of impact assessment
with and without downscaling application

Substantial comparison studies have been conducted in
crop yields modelled by applying direct outputs of GCMs
and dynamically downscaled outputs of GCMs. Significant
differences in simulated crop yields were found between the
use of high resolution scenarios produced from a regional
model, and the use of coarser resolution GCM scenarios
(Mearns et al. 1998; 1999, 2001b). For simulated corn in
Iowa, for example, the large scale (GCM) scenario resulted
in a statistically significant decrease in yield, but the high
resolution scenario produced a non-significant increase.
Significant differences in simulated crop (corn, cotton, rice,
soybeans, sorghum, and wheat) yields were also found by
Mearns (2003, and references therein) and Mearns et al.
(2003b) except for wheat. In general, fine-scale scenarios
produced larger decreases in yield, which is contrary to the
finding of Mearns et al. (1998; 1999; 2001b). These
controversial conclusions are associated with the particular
crop considered, the scale of aggregation of the cropping
results, and whether crop management options considered
or not. A study by Guereña et al. (2001) found by applying
the direct outputs of GCM and outputs of RCM (dynam-
ically downscaled) that there was no significant difference
in irrigated crop yields for the Iberian peninsula. Most
likely the management practice (i.e., irrigation) masked the
effects of downscaled rainfall on crop production. Down-
scaling is required when the land surface is highly
heterogeneous, or the research aims to investigate the
effects of changes in climate variability, and extreme
climate events or impact indicators (e.g., crop yield) are
sensitive to climate variables.

Single scenarios and probabilistic climate change scenarios

Because of the large uncertainties surrounding the projec-
tion of climate change, it is common to employ climate
scenarios to estimate the impacts of climate change on a
specific system (Wigley 1987; Lamb 1987). Single scenar-
ios or a range of scenarios derived from different GCMs
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have been applied to impact assessment. Assessment results
derived from single scenarios appear precise, but are
conditional to those particular scenarios. Such results are
unlikely to represent other possible futures as the results are
not based on the full spectrum of future CCSs and thus are
highly speculative (Hulme and Carter 1999). Outcomes
based on single scenarios, or even on a range of
scenarios, are plausible, but contain no information as
to their likelihood. While appropriate for testing sensi-
tivity and vulnerability of a particular system, the use of
plausible CCSs without investigating likelihood is poorly
suited to planning or policy purposes (Jones 2000a;
Ahmad et al. 2001).

Since the Third Assessment Report (TAR) of Intergov-
ernmental Panel on Climatic Change (IPCC), probabilistic
CCSs have been constructed aimed at addressing uncer-
tainty issues in impact assessment. There is a substantial
literature reporting probability density functions (pdfs) of
climate sensitivity that provides significant methodological
advances over the long-held estimated range. Challinor et
al. (2009) addressed uncertainty issues from the perspec-
tives of both crop and climate by considering a large
number of parameters. Christensen et al. (2007b) described
methods of applying different weighting schemes to multi-
model ensemble projections of climate. Dessai et al. (2005)
tested the sensitivity of probabilistic regional CCSs to
major uncertainty sources such as GHG emissions, climate
sensitivity and model-to-model difference. Buser et al.
(2009) applied Bayesian methods to quantify mean changes
and interannual variability of temperature from the per-
spective of model biases.

Two principal methods have been used to attach
probabilities to impacts: (1) application of a large number
of scenarios to an impact assessment, and creation of a
probability distribution from the outcomes; and (2) creation
of an underlying probability distribution for each successive
stage of analysis, explicitly managing the underlying
uncertainty at each stage. In producing a wheat yield
change distribution, Luo et al (2006) used the first method
to manage uncertainties from the projection of GHG
emission, projection of climate sensitivity and projection
of regional climate change (climate model-to-model differ-
ence). Semenov and Stratonovitch (2010) considered 15
climate models in producing the distribution of heat stress
index associated with wheat crop at flowering time under
climate change conditions. The second method is described
by Hulme and Carter (1999) and Jones (2000b) and applied
in Howden et al. (1999) and Luo et al. (2005a, b, c).
Howden and Jones (2001) undertook a probabilistic
analysis of the costs and benefits of climate change on
Australia’s national wheat crop. The ENSEMBLES
research project mentioned earlier modelled various
sources of uncertainty to produce regional probabilities

of climate change and its impacts for Europe (Hewitt
and Griggs 2004).

Major dynamical downscaling inter-comparisons such as
CORDEX (Giorgi et al. 2009), NARCCAP (http://www.
narccap.ucar.edu/index.html), PRUDENCE and ENSEM-
BLES and statistical downscaling inter-comparisons of
STARDEX (http://www.cru.uea.ac.uk/projects/stardex/) can
be used as sources for constructing probabilistic CCSs.
Recently, a systematic approach to explore the uncertainty
of a single climate model parameterization was proposed,
the so-called perturbed physics ensembles (PPE) (Murphy
et al. 2004; Stainforth et al. 2005). In each experiment,
model parameters were set to a range of values derived
from multiple prior distribution estimated by experts based
on their knowledge of the relevant physical systems
(Semenov and Stratonovitch 2010). The size of a PPE is
particularly big due to the large number of parameters, their
possible values and combinations involved for a specific
model. Semenov and Stratonovitch (2010) described a
sampling technique to explore uncertainty in climate
prediction from very large PPEs. Murphy et al. (2007)
described a Bayesian method, developed at the Hadley
Center, appropriate for the estimation of a joint probability
distribution function of key climate variables at a spatial
scale of 25 km, for the use of regional climate impact
assessment. Development and application of multiple
climate models with large PPEs will be one of the key
research directions in future CCRA.

Mean climate change scenarios versus mean and climate
variability change scenarios

A feature of previous agricultural impact assessment is that
changes in mean climate such as rainfall, maximum
temperature and minimum temperature were used in crop
models to quantify their effects on crop production. The
possible impacts of changes in climatic variability (e.g., in
the length of wet and dry spells, and in temperature
variability) on crop production have been ignored in most
previous studies. The focus on mean climatic change has
provided useful but limited information on how future
changes in climatic variability (through extreme events
such as drought and extreme high temperatures) might
affect agriculture (Mearns et al. 1997; Luo et al. 2010). It
has long been recognised that changes in climatic
variability can have serious effects on agricultural yield
(Parry and Carter 1985). One of the main means by which
crops are affected is through changes in the frequency of
extreme climatic events (e.g., heat waves, droughts)
(Mearns et al. 1984; Semenov and Barrow 1997). Changes
in climatic variability have a greater effect on the
frequency of extremes than changes in mean climate (Katz
and Brown 1992).
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Several studies worldwide have attempted to quantify
the potential impacts of mean and variability changes
(derived from GCM outputs) on crop production. For
instance, Semenov and Barrow (1997) examined the
importance of changes in climatic variability on wheat
yields in Spain based on outputs of a transient GCM
(UKTR) and found that there were significant differences in
the distribution of wheat yield once changes in climatic
variability were taken into account. Mearns et al. (1997)
investigated the impacts of changes in climatic variability
on wheat yields in the USA by using the outputs of a RCM.
Torriani et al. (2007) quantified the effects of changes in
mean and variability on the yield of winter and spring crops
in Switzerland. Luo et al. (2010) investigated the effects of
changed mean climate and climate variability on the mean
and coefficients of variation of wheat and canola yield and
harvest index in southeast Australia. There has been recent
progress in this field, with expanded computer resource
volume, daily outputs of GCMs/RCMs ever more widely
available, and longer term simulation of GCMs/RCMs at
daily time steps, enabling stable signals of climatic change
to be obtained. There has also been progress in GCM
performance in simulating the behavior of climatic vari-
ability, in downscaling techniques, and in the coupling
techniques between the outputs of GCMs/RCMs and crop
models. For example, an earlier version (v2.1) of the
weather generator: LARS-WG (the coupling technique
between the outputs of GCMs and crop models) could
produce only mean CCSs. A later version (v3.5) of this
weather generator had the capacity to incorporate changes
in both mean climate and climate variability. Recently, this
generator has been improved (v5.0) to more accurately
represent changes in climate variability. All these advances
have made it possible to study the combined effects of
changes in both mean and variability on crop production.
Nevertheless, advances in this direction have been/are
hampered by a lack of understanding of the mechanisms
leading e.g., to decadal variability. Also even in the case of
the El Niño Southern Oscillation (ENSO), the ability of the
current generation of AOGCM to reproduce the relevant
mechanisms of change must be considered as limited (Latif
and Keenlyside 2009). Changes in variability often have to
come from outside of GCM projections (i.e., with the aid of
weather generators).

Conclusions

Over the last 30 years, significant progress has been made
in developing CCSs for agricultural impact assessment at
appropriate temporal and spatial scales. This is reflected in
the development of transient CCSs; construction of prob-
abilistic CCSs with management of the uncertainty from

GHG emissions, climate sensitivity and regional climate
change; and construction of scenarios with changes in both
mean and variability integrated; as well as the emergence of
a range of downscaling techniques. All the advances made
so far have been oriented to reduce/deal with uncertainties
to improve the robustness of CCRA.

It should be noted that neither dynamically nor statisti-
cally downscaled daily outputs of GCMs can be used
directly in agricultural impact assessment. It is first
necessary to obtain climate change information between
the future period and the baseline period. The length of
each period must be at least 30 years to capture climate
change signals over high-frequency and low-skill noise.
Obtained climate change information can then be applied to
weather generators to produce long time series (e.g.,
100 years) CCSs for the use of crop models. Although
weather generators have their own limitations, CCSs
constructed in this way are more robust than the direct
use of the 30-year downscaled daily outputs of GCMs, as
the latter may encompasses bias from the climate model
itself without integrating with historical climate data.
Another advantage of this approach is that longer time
series CCSs can be generated that can capture the tails of
climate distribution and therefore facilitate examination of
the impact of ENSO variation.

It is widely recognised that GHG, climate sensitivity, and
inter-model differences at the regional scale are the major
uncertainties to be represented in pdfs of regional climate
change (Carter et al. 2007). Other important factors include
downscaling techniques, multi-model ensembles (due to
different initial condition or parameterization of a specific
climate model) and regional forcings such as aerosols and
land-cover change (e.g., Dessai 2005). As illustrated in the
section on Single scenarios and probabilistic climate change
scenarios, these major uncertainties have been incorporated
into regional CCSs and applied to agricultural impact
assessments. Substantial work has been done in evaluating
the performance of GCMs. For example, Giorgi and
Mearns (2002) introduced the reliability ensemble ap-
proach, which provides weights for climate model predic-
tion. Application of weighted GCMs will lead to reduced
uncertainties in developing regional CCSs and will become
normal practice in the assessment of climate change impact
and adaptation. Uncertainties due to downscaling techni-
ques and multi-model ensembles have not been addressed
rigorously in agricultural impact assessment. Inter-
comparison of the impact difference due to various
downscaling techniques (statistical downscaling and dy-
namical downscaling and interpolation) is an interesting
research topic in CCRA in the agricultural sector. As
mentioned in the section on Mainstream downscaling
techniques, there are some initiatives in Europe that have
addressed uncertainty issues in relation to RCMs, but
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similar work has not been done in the rest of the world.
Development and application of multiple RCMs forced by
multiple GCMs and under multiple emission scenarios is
needed in other regions. The approaches reported in
Semenov and Stratonovitch (2010) and detailed in the
section on Single Scenarios and Probabilistic Climate
Change Scenarios represent important pathways in quanti-
fying and managing uncertainties from the outputs of
GCMs and should be encouraged in future CCRA.
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